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We consider the problem of determining the stresses in a thin, homogeneousdisc, 
weakened by N like holes situated at the same distance from the center and 

acted upon by a constant normal load applied along its periphery. Such a cyclic- 

ally symmetric problem was solved by Buivol in [l]. who reduced the Sherman 

integral equation [2, 33 along the boundary L of the region in question, to an 

equation along the part of L designated by I and lying within the angle 6, <; 
6 < B0 + z, where 7 = 2n / iv and 6 is the angular coordinate of the points of 

1 in the polar coordinate system chosen in the plane of the annulus in the usual 

manner, and 6, is arbitrary. 

Such an approach utilizes the symmetry of the problem when the resulting 
equations are solved numerically and, unIike other methods [4-S]. it does not 
impose any restrictions on the size and distribution of the holes, while a suitable 
choice of the norm in the method of least squares ensures uniform convergence 

of the complex potentials 9 (2) and 5) (z) and their derivatives right up to their 

boundaries. Unfort~ately, the paper [I] contains an error. The transformation 

of the function w (t) under a rotation by the angle r is determined with the 
accuracy of only up to its principal term, i.e. up to the limiting value of the 
function holomorphic outside the region in question (see p] for a representation 
of holomorphic functions in terms of the Cauchy integrals). Such a limiting value 
affects the form of (I, (z) and hence the result. In the present paper this value is 
determined with help of the condition of transformation of 9 (z) under rotation, 
used in [I]. 

It is proved that w (t) belongs to some subspace Was (I;, T) of the space 
wz’ (L), consnucted by taking into account the symmetry of the problem. The 
application of the method of least squares in ~23 (L, 7) leads to an economic 
computational scheme. We give numerical results for N = 4 in the case of dif- 
ferent disk-geometries. The method of solution can be easily extended to the 
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case of an arbitrary static load which does not violate the symmetry of the prob- 
lem. 

We introduce the following notations: S, is the domain under consideration, S_ is 
the complement of S, to the entire complex plane, L is the boundary of the domain 
(related neither to S, not to S_), L, is the outer boundary of the dish of radius K, LI, 
is the boundary and zk is the center of the k- th hole of radius F (k = 1, 2,. . . , N), 
cp fz), 9 (2) are the Kolosov functions, holomorphic in S,, and t, t0 are points on 
L. 

According to 12, 31, rp (z) and + (z) are sought in the form 

1 
Y (2) = z -g- dt -f- U(z), u = ; -, bk 

z-z (1) 
k=l k 

W)=& s -g&_& s* dt + u (z) (2) 
L L 

b, = i 
s 

{co (t)dT-- addtp, k=l,2,...N 

=k 

Here o (1) is a sufficiently smooth complex function on L and b, are real constants. 
The boundary condition leads us to an integral equation relative to w (t) 

+ 

-Cc,=f(tO) on L, 

(3) 

C, 12: - s o (t) dS, dS = 1 dt 1 

Lh. 

Rotation through an angle z does not affect the state of stress of the disk. Therefore, 
except for nonessential terms, we have 

cp (ZP) = d’(c (2) 

* (ZP) = e-i’* (2) 

We write the function U (z) in the form 

(4) 

(5) 

u (2) = 
h (t) =dt, h (t) - 

(6) 

Substituting (1) into (4) and taking into account (6), we obtain 

0 (tei’) = ei+co (t) + HO (t) + q (t) 

0, t E Lo 

,J (t) = bkeiT - bk+le-ir 

t-zZh. ’ 
t E L,, k = 1, 2, . . ., iv 

Here HO (t) is the boundary value of a function which decreases at infinity and is holo- 
morphic in S_, and will be determined later. In [l], the function Ho (t) was arbitrarily 
assumed identically equal to zero. 
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In formula (6) as well as below, due to the periodicity 
b N+l = b, and we perform in (2) the change of variable 

condition. we assume b, = b,, 

5 = ZCZ-‘~. Making use of (5) 

and (6). we obtain 
1 

-52 
B2dt- (7) 

L L L 

/3, = bkeis -- bk+Je+ 

The integrals which contain q(t) are computed with the aid of residues. With the aim 

of forming an equation of type (3) relative to H (t) = 07 II,, (t), we first compute 

d,=i ’ (H(t)d~-_Uddl}=6,+,-10, 
a 

(8) 

Noting that the function 
Lh. 

’ 11 (t, 
P(t)= - 

1 
t-t dt 

is identically equal to zero in s,, we add the expression p (E) + ,Ep’) to the left- 

hand side of (7). Making E tend to t o and making use of the formula (8) and the rela- 

tion (1 - tk) (t- Z1;, = P, we arrive at the equation 

whose solution is 
I 0, t E L,, 

H(t) zz 
-_ t E TJk 

Since H (1) is the boundary value of a function which is holomorphic in A’-, we must 

have bk+I = bk. Reverting to H,, (1) = H (t) elT, we obtain finally 

I 
0, 1 e Ln 

0 (tei+) = eisW (t) -k 
Pp + - 

r 

t 
(T_Zk)’ 

I 
* tE% 

(10) 

here the subscript of fi,Yis omitted since all bk are equal. 
In order to solve (3) by the method of least squares, we choose a fundamental system 

of functions in Wzs (L) 

[$)? i;),+‘, cl<R 
(11) 

(e)“, ( (f2z,i) )“f’~.>r. m=O,i, 2... 

which is the direct union of the systems fundamental on Lp, p = 0, I,... N. 

We form linear combinations of the elements of this system, satisfying the relation 

(10). These are, as one can easily see, combinations of the form 
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on Lo , and 

on Lk. 

(t - ‘k)’ 
+ 

P=l 

n 

xi 

Ca~fplei(~+Wr 

8hRe W) sin r 
c2$i+ (1 _ ,aiky 

(t _ zk) (i _ e2i+) - 

cg (1 - eik’) Zk _ ,ge-is (1 _ e--y +a 

(F- Tk), (1 -e+) (T- Zk)S (1 - @i’) 1 

We take the closure of this linear set on the norm of Wts and we denote the obtained 

space by J+‘s3 (L, ‘c). Let us prove that the desired function o (t) belongs to this space. 

Since o (t) belongs to W2 (L), it follows that for sufficiently large n we have the in- 

equality 

jj 0 (4 -v (i) Il$+7, < E, “4 = i QiYi (13) 
i=l 

where yi are the elements of the fundamental system (11). ai are constants, and E is 

an arbitrary positive number. Performing in (13) a change of variable in the integral de- 

fining the norm 5 = teei’ and using (IO), we obtain 

II v P*‘J - e’*v W t P (t) IIwg G 2~ (1 + T) 

The function P (t) can be found for v (t) from the right-hand side of (10). From here 
one can obtain the estimate 11 o (t) - v1 (t) uw,, < EF, where vl, belonging to ~Yz~(L,~) 
is constructed in terms of v in the obvious manner and Ir‘ is uniformly bounded. 

We adduce the expressions for Ayi computed with the aid of residues and the subse- 
quent limiting process z + t 

A (Qm .= tm + mtl”- - mR2Em-', m > 2 

A (tip = 2tm, t1 E Lo, m:=O, 1 

A (fl)‘” = fm, m),l, tlE Lo 

A(-&)=-+++&- ,t”,,,) 
where A is the operator defined by the left-hand side of Sherman’s equation. We have 
assumed, for simplicity, that cl = c2 = I. To the expression for A 11 ! (tz - Zk)“] the 
following term must be added: 
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3im (-I)“+’ m sin (k (m -+ 1) T) /f+n-’ 
( 
‘+- - f ! !_ - is 

) 

which in Eq. (3) corresponds to the term of the form 

1 
bo = 2ni , I-r=jz,I 

which is identically equal to zero. 

The formulas for the coefficients alk = (Ayh, AYE) wn, are constructed with the aid of 

the residues. We do not give them here because of their cumbersome nature. 

For the numerical realization of the method, a program was set up and computations 
were carried out on the electronic computer ICL-1905E. The stresses os / i, at the points 

of L and the radial displacements u / u. at the points of L, (P is the intensity of the 

load and uo is the displacement in a compact disk of the same radius) are shown in Fig. 

1 for the case of holes which are close to each other, and in Fig. 2 for the case of holes 

Fig. 1 

Fig. 2 
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which are close to the boundary of the disk. The relative dimensions of the disks were 
r ] K = 0.23, H / R = 0.4 and P 1 R = 0.3, H I R = 0.6 , respectively. The order of 

the normal system was chosen to be 22, the duration of the computations was about 30 

minutes. The closeness of the obtained solution to the exact one was estimated from 

the relative error in the realization of the boundary conditions, being 4 % in the first case 
and 2.5 % in the second case. For N = 6, for the same disposition of the holes and the 

same accuracy, the duration of the computation increased to 42 minutes. 
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Problems of the axisymmetric deformation of elastic thin-walled shells of revo- 

lution, taking into account the finiteness of the displacements, have been exam- 

ined sufficiently completely up to now for spherical type shells. Thus, numerical 

methods have been developed in [l-4] and solutions have been obtained for 
domes of diverse geometry under various external effects. It is shown below in 

the example of a long cylindrical shell that equilibrium modes of the rubber type 
of a flexible rod appear for shells of revolution whose Gaussian curvature is al- 
most zero, under definite effects. 

Let a cylindrical shell of thickness h and radius Er (Fig. 1) be compressed uniformly 
by longitudinal stress resultants N and heated to the temperature t (5) = 1/S 2’ sign (x), 


